

# Course guide

Year 2025/2026 1102017 - Agricultural Plant Breeding

# Information about the subject

Degree: Bachelor of Science Degree in Biotechnology

Faculty: Faculty of Veterinary Medicine and Experimental Sciences

Code: 1102017 Name: Agricultural Plant Breeding

Credits: 6,00 ECTS Year: 0 Semester: 1

Module: Elective Courses

Subject Matter: Agricultural Plant Breeding Type: Elective

**Department:** Biotechnology

Type of learning: Classroom-based learning

Languages in which it is taught: Spanish

Lecturer/-s:





# Module organization

#### **Elective Courses**

| Subject Matter                                                   | ECTS | Subject                                                    | ECTS | Year/semester                                                    |
|------------------------------------------------------------------|------|------------------------------------------------------------|------|------------------------------------------------------------------|
| Marine<br>Biotechnology                                          | 6,00 | Marine Biotechnology                                       | 6,00 | 0, 3, 4/1                                                        |
| Pharmacology and<br>Toxicology                                   | 6,00 | Pharmacology and<br>Toxicology                             | 6,00 | 0, 3/1                                                           |
| R&D in Marine<br>Sciences                                        | 6,00 | R&D in Marine Sciences                                     | 6,00 | 3, 4/1                                                           |
| Sea Food<br>Technology                                           | 6,00 | Sea Food Technology                                        | 6,00 | 3, 4/1                                                           |
| Instrumental<br>Techniques of<br>Marine Analysis                 | 6,00 | Instrumental Techniques<br>of Marine Analysis              | 6,00 | 4/1                                                              |
| Genetic<br>Techniques<br>Applied to the<br>Marine<br>Environment | 6,00 | Genetic Techniques<br>Applied to the Marine<br>Environment | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
| Principles of Food<br>Biotechnology                              | 6,00 | Food Biotechnology                                         | 6,00 | 0, 3, 4/1                                                        |
| Plant Tissue and<br>Cell Culture                                 | 6,00 | Plant Tissue and Cell<br>Culture                           | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
| Molecular<br>Phytopathology                                      | 6,00 | Molecular Phytopathology                                   | 6,00 | 3, 4/1                                                           |
| Agricultural Plant<br>Breeding                                   | 6,00 | Agricultural Plant<br>Breeding                             | 6,00 | 0/1                                                              |
| Seed Physiology<br>and Molecular<br>Biology                      | 6,00 | Seed Physiology and<br>Molecular Biology                   | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |

2/14





| Biocontrol for Crop<br>Protection                | 6,00 | Biocontrol for Crop<br>Protection                | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
|--------------------------------------------------|------|--------------------------------------------------|------|------------------------------------------------------------------|
| Agrigenomics                                     | 6,00 | Agrigenomics                                     | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
| Food Microbiology<br>and Toxicology              | 6,00 | Food Microbiology and<br>Toxicology              | 6,00 | 0/1                                                              |
| Biomolecular<br>Modeling                         | 6,00 | Biomolecular Modeling                            | 6,00 | 0/1                                                              |
| Pharmaceutical<br>Engineering and<br>Drug Design | 6,00 | Pharmaceutical<br>Engineering and Drug<br>Design | 6,00 | 0, 4/1                                                           |
| Gene Therapy                                     | 6,00 | Gene Therapy                                     | 6,00 | 0, 4/1                                                           |
| Molecular<br>Pathology                           | 6,00 | Molecular Pathology                              | 6,00 | 0, 4/1                                                           |
| Clinical<br>Biotechnology                        | 6,00 | Clinical Biotechnology                           | 6,00 | 0/1                                                              |
| Immunology                                       | 6,00 | Immunology                                       | 6,00 | 0, 3/1                                                           |
| Principles of<br>Environmental<br>Biotechnology  | 6,00 | Environmental<br>Biotechnology                   | 6,00 | 4/1                                                              |
| Biosensors                                       | 6,00 | Biosensors                                       | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
| Environmental<br>Engineering                     | 6,00 | Environmental<br>Engineering                     | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
| Bioremediation                                   | 6,00 | Bioremediation                                   | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |





| Environmental<br>Toxicology | 6,00 | Environmental Toxicology | 6,00 | This elective is not<br>offered in the<br>academic year<br>25/26 |
|-----------------------------|------|--------------------------|------|------------------------------------------------------------------|
| Bioindicadores              | 6,00 | Bioindicators            | 6,00 | 0, 3, 4/1                                                        |

## Recommended knowledge

Have passed the subject of 3rd year: Plant Biotechnology of the Biotechnology Degree

## \_earning outcomes

At the end of the course, the student must be able to prove that he/she has acquired the following learning outcomes:

- R1 The student has understood and assimilated the contents of the subject.
- R2 The student is able to solve problems or case studies related to the subject contents, by using different resources (bibliographic, IT, etc.)
- R3 The student is able to work in a laboratory, carrying out basic operations correctly and taking into account the corresponding safety standards. He/she understands the planning, development and purpose of the experience, and is able to contrast and validate the obtained results.
- R4 The student is able to write an intelligible and organized text on different aspects of the subject.
- R5 The student is able to present and defend his/her work adequately.
- R6 The student seeks bibliographic information from different sources and can analyze it with a critical and constructive spirit.
- R7 The student collaborates with the teacher and his/her peers throughout the learning process; he/she works in a team; treats everyone with respects, is proactive and fulfills the organization rules of the course.





# Competencies

Depending on the learning outcomes, the competencies to which the subject contributes are (please score from 1 to 4, being 4 the highest score):

| ASIC |                                                                                                                                                                                                                                                                                  |   | Weig | hting                                                                   | 3 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-------------------------------------------------------------------------|---|
|      |                                                                                                                                                                                                                                                                                  | 1 | 2    | 3                                                                       | 4 |
| CB1  | Students acquire and understand knowledge in their field of study<br>based on general secondary education but usually reaching a level<br>that, although supported on advanced text books, also includes<br>aspects involving state-of-the-art knowledge specific to their area. |   | X    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |   |
| CB2  | Students are able to apply knowledge to their work in a professional<br>way and have the competences enabling them to state and defend<br>views and opinions as well as perform problem-solving tasks in their<br>field of study.                                                |   |      | X                                                                       |   |
| CB3  | Students are able to collect and interpret relevant data (generally in their field of study) and give opinions that involve reflection on relevant social, scientific or ethical issues.                                                                                         |   | x    |                                                                         |   |
| CB4  | Students can communicate information, ideas, problems and solutions to a specialized or non-specialized audience.                                                                                                                                                                |   |      | x                                                                       |   |
| CB5  | Students develop the necessary learning skills to undertake further studies with a high level of autonomy.                                                                                                                                                                       |   |      | X                                                                       |   |

| GENERAL                           |         |  | We | eigl | ntir | ng |  |   |
|-----------------------------------|---------|--|----|------|------|----|--|---|
|                                   |         |  | 1  |      | 2    | 3  |  | 4 |
| CG01 Capacity to analyze and synt | hesize. |  |    |      |      |    |  | x |

| Weighting |   |   |   |  |   |
|-----------|---|---|---|--|---|
|           | 1 | 2 | 3 |  | 4 |
|           |   |   | x |  |   |
|           |   |   |   |  |   |





| CE23 | Knowing how to use laboratory equipment and to carry out basic operations for each discipline including: safety measures, handling, waste disposal and activity register. | x |                       |   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|---|
| CE24 | Knowing basic and instrument laboratory techniques in the different areas of biotechnology.                                                                               |   | X                     |   |
| CE25 | Knowing how to analyze and understand scientific data related to biotechnology.                                                                                           |   |                       | x |
| CE26 | To understand and identify the mechanisms that influence genetic inheritance                                                                                              | X |                       |   |
| CE27 | Knowing and applying action plans and assessment criteria of biotechnology processes.                                                                                     |   | X                     |   |
| CE28 | Integrating life science and Engineering into processes of development of biotechnological products and applications.                                                     | X |                       |   |
| CE29 | Contrasting and checking results of biotechnological experimentation.                                                                                                     |   | 1<br>1<br>1<br>1<br>1 | X |
| CE30 | Solving and analyzing problems posed by biotechnology.                                                                                                                    |   | X                     |   |
| CE31 | Describing and calculating important variables of processes and experiments.                                                                                              | X |                       |   |
| CE32 | Knowing how to use different specific operating systems and software packages designed for Biotechnology.                                                                 | X |                       |   |
| CE33 | Knowing and complying with legislation and ethics of biotechnological processes and applications.                                                                         |   | X                     |   |
| CE34 | Knowing main characteristics of Molecular biosciences and biotechnology communication.                                                                                    |   | X                     |   |
|      |                                                                                                                                                                           |   |                       |   |

| TRANSVERSAL               |                                                                                 | Weighting |
|---------------------------|---------------------------------------------------------------------------------|-----------|
|                           |                                                                                 | 1 2 3 4   |
| CT02 Capacity to organize | e and plan.                                                                     | x         |
| CT03 Mastering Spanish of | oral and written communication.                                                 | x         |
| CT05 Knowing and applyin  | ng Basic ITC skills related to Biotechnology.                                   | x         |
|                           | information (capacity to look for and analyze from different types of sources). | x         |





| CT07 | Problem solving.                                                  | x |   |   |
|------|-------------------------------------------------------------------|---|---|---|
| CT08 | Decision making X                                                 |   |   |   |
| СТ09 | Capacity to work in interdisciplinary and multidisciplinary team. |   |   | x |
| CT10 | Interpersonal skills.                                             |   | x |   |
| CT11 | Understanding multicultural and diverse environment               | x |   |   |
| CT12 | Critical and self-critical capacity.                              |   | x |   |
| CT13 | Ethics.                                                           |   | x |   |
| CT14 | Capacity to learn                                                 |   |   | x |
| CT15 | Capacity to adapt to new situations                               | x |   |   |
| CT16 | Capacity to produce new ideas (creativity)                        | x |   |   |
| CT19 | Capacity to apply theoretical knowledge                           |   | x |   |
| CT20 | Research skills                                                   | x |   |   |
| CT21 | Sensitivity to environmental issues                               |   | x |   |





# Assessment system for the acquisition of competencies and grading system

| Assessed learning outcomes | Granted percentage | Assessment method    |
|----------------------------|--------------------|----------------------|
| R1, R2, R3, R4             | 70,00%             | Written test         |
| R1, R2, R4, R5, R6, R7     | 15,00%             | Submission of papers |
| R1, R3, R4, R5, R6, R7     | 15,00%             | Laboratory test      |

#### Observations

This course is not eligible for single evaluation. According to the general evaluation and qualification regulations, the preferred evaluation system will be continuous evaluation.

- In order to promediate, a minimum of 5/10 is requires in both written tests

- Attendance at laboratory sessions is mandatory to qualify for passing the subject (in case of absence shall be justified).

\*The use of artificial intelligence (AI)-based tools is subject to the discretion of the teacher, who may establish specific limits or conditions depending on the training or assessment activity.

#### **MENTION OF DISTINCTION:**

In accordance with the regulations governing the assessment and grading of subjects in force at UCV, the distinction of "Matrícula de Honor" (Honours with Distinction) may be awarded to students who have achieved a grade of 9.0 or higher. The number of "Matrículas de Honor" (Honours with Distinction) may not exceed five percent of the students enrolled in the group for the corresponding academic year, unless the number of enrolled students is fewer than 20, in which case a single "Matrícula de Honor" (Honours with 9 Distinction) may be awarded. Exceptionally, these distinctions may be assigned globally across different groups of the same subject. Nevertheless, the total number of distinctions awarded will be the same as if they were assigned by group, but they may be distributed among all students based on a common criterion, regardless of the group to which they belong. The criteria for awarding "Matrícula de Honor" (Honours with Distinction) will be determined according to the guidelines stipulated by the professor responsible for the course, as detailed in the "Observations" section of the evaluation system in the course guide.





# Learning activities

The following methodologies will be used so that the students can achieve the learning outcomes of the subject:

- M1 Teacher presentation of contents, analysis of competences, explanation and in-class display of skills, abilities and knowledge.
- M2 Group work sessions supervised by the professor. Case studies, diagnostic tests, problems, field work, computer room, visits, data search, libraries, on-line, Internet, etc. Meaningful construction of knowledge through interaction and student activity.
- M3 Activities carried out in spaces with specialized equipment.
- M4 Supervised monographic sessions with shared participation..
- M5 Application of multidisciplinary knowledge.
- M6 Personalized and small group attention. Period of instruction and/or guidance carried out by a tutor to review and discuss materials and topics presented in classes, seminars, readings, papers, etc.
- M7 Set of oral and/or written tests used in initial, formative or additive assessment of the student
- M8 Group preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring sessions. Work done on the university e-learning.
- M9 Student's study: Individual preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring sessions. Work done on the university e-learning platform.





#### **IN-CLASS LEARNING ACTIVITIES**

|                                   | LEARNING OUTCOMES          | HOURS | ECTS |
|-----------------------------------|----------------------------|-------|------|
| ON-CAMPUS CLASS                   | R1, R2, R4, R5, R6, R7     | 30,00 | 1,20 |
| PRACTICAL CLASSES                 | R1, R2, R3, R4, R5, R6, R7 | 11,50 | 0,46 |
| LABORATORY<br><sup>M3</sup>       | R1, R2, R3, R7             | 3,00  | 0,12 |
| SEMINAR<br><sup>M4</sup>          | R1, R2, R4, R6             | 2,30  | 0,09 |
| GROUP PRESENTATION OF ASSIGNMENTS | R1, R2, R4, R5, R6, R7     | 8,20  | 0,33 |
| TUTORIAL<br>M6                    | R1, R2, R4, R5, R6         | 3,00  | 0,12 |
| ASSESSMENT<br>M7                  | R1, R2, R3, R4, R5, R6, R7 | 2,00  | 0,08 |
| TOTAL                             |                            | 60,00 | 2,40 |

## LEARNING ACTIVITIES OF AUTONOMOUS WORK

|                            | LEARNING OUTCOMES      | HOURS | ECTS |
|----------------------------|------------------------|-------|------|
| AUTONOMOUS GROUP WORK      | R1, R2, R4, R5, R6, R7 | 18,30 | 0,73 |
| AUTONOMOUS INDIVIDUAL WORK | R1, R2, R4, R5, R6, R7 | 71,70 | 2,87 |
| TOTAL                      |                        | 90,00 | 3,60 |





# Description of the contents

Description of the necessary contents to acquire the learning outcomes.

## Theoretical contents:

| Content block                                      | Contents                                                                                                                                                                                                                                                         |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIDACTIC UNIT 1: INTRODUCTION TO<br>PLANT BREEDING | Unit 1. Introduction to plant breeding. Plant domestication<br>and places of origin.<br>Unit 2. In vitro tissue culture<br>Unit 3. Direct and indirect morphogenetic pathways<br>Organogenesis and somatic embryogenesis. Callus and<br>suspension cell culture. |
|                                                    |                                                                                                                                                                                                                                                                  |





Methods of propagation and germplasm conservation:

Unit 5. Plant Genetic Resources. In vitro Germplasm

Unit 6. Molecular markers and their application to the

Methods for generating and analyzing diversity:

Unit 11. Generation of somaclonal variation.

Unit 7. Cultivation of haploid cells and double haploids plants

Unit 9. Pollination and in vitro fertilization. Embryo rescue Unit 10. Isolation, culture and protoplast fusion. somatic

Unit 12. Use of tissue culture for obtaining and maintenance

**Biotechnological breeding by genetic transformation:** Unit 13. Genetic engineering techniques to confer virus

Unit 14. Obtaining plants resistant to bacterial diseases. Unit 15. biotechnological approaches for fungal stress

Unit 18. Getting tolerant plants to different types of abiotic

Unit 19. Developments in biotechnology in ornamental

Methods to accelerate breeding programs:

Unit 4. Micropropagation

genetic improvement of crops.

conservation

obtaining

hybridization.

Unit 8. Mutagenesis

of disease-free plants.

resistance in plants.

management.

stresses.

crops.

management in agriculture.

Unit 16. Getting insect resistant plants.

Unit 17. Biotechnological Applications to weed

#### DIDACTIC UNIT 2: BIOTECHNOLOGICAL BREEDING METHODS IN PLANTS

Analysis of case studies studied in the theoretical contents

Unit 20. Quality improvement in plant foods

## DIDACTIC UNIT 3: STUDY OF PROTOCOLS AND PRACTICAL CASES

DIDACTIC UNIT 4: LABORATORY PRACTICES

- Indirect organogenesis in Daucus carota
- Rose Micropropagation.

Unit 21. Molecular farming

- Genetic transformation and gene regulation.





Organization of the practical activities:

|       | Content                                                   | Place        | Hours |
|-------|-----------------------------------------------------------|--------------|-------|
| PR1.  | Sterilization and explant planting                        | Laboratory   | 2,00  |
| PR2.  | Rose Micropropagation                                     | Laboratory   | 2,00  |
| PR3.  | Indirect organogenesis induction                          | Laboratory   | 2,00  |
| PR4.  | In vitro shoot subcultures from PR2                       | Laboratory   | 2,00  |
| PR5.  | Preparation of antibiotic stocks and transformation media | Laboratory   | 2,00  |
| PR6.  | Preparation of bacterial strains and plásmids             | Laboratory   | 2,00  |
| PR7.  | Genetic transformation                                    | Laboratory   | 2,00  |
| PR8.  | Analysis of results obtained in PR7                       | Laboratory   | 2,00  |
| PR9.  | Subcultures and interpretation of obtained results        | Laboratory   | 2,00  |
| PR10. | Practical laboratory case and protocols study             | Lecture room | 4,50  |





#### Temporary organization of learning:

| Block of content                                                | Number of sessions | Hours |
|-----------------------------------------------------------------|--------------------|-------|
| DIDACTIC UNIT 1: INTRODUCTION TO PLANT BREEDING                 | 2,50               | 5,00  |
| DIDACTIC UNIT 2: BIOTECHNOLOGICAL BREEDING<br>METHODS IN PLANTS | 14,00              | 28,00 |
| DIDACTIC UNIT 3: STUDY OF PROTOCOLS AND<br>PRACTICAL CASES      | 4,50               | 9,00  |
| DIDACTIC UNIT 4: LABORATORY PRACTICES                           | 9,00               | 18,00 |

## References

BHOJWANI S.S., RAZDAN M.K. 1996. Plant tissue culture: theory and practice. A revised Edition. Elsevier Science, Amsterdam.

CHAWLA, H.S. 2002. Introduction to Plant Biotechnology. 2nd ed., Science Publishers, Enfield. CHRISTOU P., KLEE H. 2004. Handbook of Plant Biotechnology. 2 vols. John Wiley & Sons, (eds.) Chischester, England.

GAMBORG O.L., PHILLIPS G.C. 1995. «Plant cell, tissue and organ culture. Fundamental methods». Springer, (eds.) Berlin.

GELVIN, S.B., SCILPEROORT, R. 2000. Plant Molecular Biology Manual. 2nd ed., Kluwer Academic Pub., Dordrecht, The Hague.

HALL, R.D. 1999. Plant Culture Protocols. Humana Press, New Jersey

TRIGIANO,R.N. & GRAY, D.J. 2000. Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press

BURRACO, A. B. 2005. Avances recientes en biotecnología vegetal e ingeniería genética de plantas. Ed. Reverté

ALTMAN, A., & HASEGAWA, P. M. 2012. Plant Biotechnology and Agriculture: Prospects for the 21st Century. Academic Press.

MURPHY, D. 2011. Plants, Biotechnology and Agriculture. CABI