Year 2023/2024 1100405 - Biotechnological Processes and Products ### Information about the subject Degree: Bachelor of Science Degree in Biotechnology Faculty: Faculty of Veterinary Medicine and Experimental Sciences **Code:** 1100405 **Name:** Biotechnological Processes and Products Credits: 6,00 ECTS Year: 4 Semester: 1 Module: Bioengineering and Biotechnological Processes Subject Matter: Biotechnological Processes and Products Type: Compulsory Department: - Type of learning: Classroom-based learning Languages in which it is taught: Spanish #### Lecturer/-s: | 1104 | Francisco Javier Soriano Pons (Responsible Lecturer) | fj.soriano@ucv.es | |-------|--|-------------------| | 1105D | Francisco Javier Soriano Pons (Responsible Lecturer) | fj.soriano@ucv.es | | CAUR | Francisco Javier Soriano Pons (Responsible Lecturer) | fj.soriano@ucv.es | Year 2023/2024 1100405 - Biotechnological Processes and Products ## Module organization #### **Bioengineering and Biotechnological Processes** | Subject Matter | ECTS | Subject | ECTS | Year/semester | |---|------|--|------|---------------| | Genetic
Engineering | 6,00 | Genetic and Molecular
Engineering | 6,00 | 3/2 | | Bioreactors | 6,00 | Bioreactors | 6,00 | 3/2 | | Biochemical
Engineering | 6,00 | Biochemical Engineering | 6,00 | 3/1 | | Plant and Animal
Biotechnology | 6,00 | Plant and Animal
Biotechnology | 6,00 | 3/2 | | Cell Culture | 6,00 | Cell Culture | 6,00 | 3/2 | | Biotechnological
Processes and
Products | 6,00 | Biotechnological
Processes and Products | 6,00 | 4/1 | ## Recommended knowledge Microbiology knowledge Year 2023/2024 1100405 - Biotechnological Processes and Products #### Learning outcomes At the end of the course, the student must be able to prove that he/she has acquired the following learning outcomes: R1 The student has understood and assimilated the contents of the subject. R2 The student is able to solve problems or case studies related to the subject contents, by using different resources (bibliographic, IT, etc.) R3 The student is able to write an intelligible and organized text on different aspects of the subject. R4 The student is able to present and defend his/her work adequately. R5 The student seeks bibliographic information from different sources and can analyze it with a critical and constructive spirit. R6 The student collaborates with the teacher and his/her peers throughout the learning process; he/she works in a team; treats everyone with respects, is proactive and fulfills the organization rules of the course. Year 2023/2024 1100405 - Biotechnological Processes and Products ## Competencies Depending on the learning outcomes, the competencies to which the subject contributes are (please score from 1 to 4, being 4 the highest score): | BASIC | | | Weig | hting | l | |-------|---|---|-----------------------|-------|---| | | | 1 | 2 | 3 | 4 | | CB1 | Students acquire and understand knowledge in their field of study based on general secondary education but usually reaching a level that, although supported on advanced text books, also includes aspects involving state-of-the-art knowledge specific to their area. | | | | X | | CB2 | Students are able to apply knowledge to their work in a professional way and have the competences enabling them to state and defend views and opinions as well as perform problem-solving tasks in their field of study. | | | | X | | CB3 | Students are able to collect and interpret relevant data (generally in their field of study) and give opinions that involve reflection on relevant social, scientific or ethical issues. | | | X | | | CB4 | Students can communicate information, ideas, problems and solutions to a specialized or non-specialized audience. | | 1
1
1
1
1 | X | | | CB5 | Students develop the necessary learning skills to undertake further studies with a high level of autonomy. | | | | X | | GENERAL | Weighting | |--|-----------| | | 1 2 3 4 | | CG01 Capacity to analyze and synthesize. | x | | SPECIFIC | Weighting | | | | | |--|-----------|---|--|--|---| | | | 2 | | | 4 | | CE22 Knowing and understanding contents, principles and theories related to biotechnology. | | | | | X | Year 2023/2024 1100405 - Biotechnological Processes and Products | CE23 | Knowing how to use laboratory equipment and to carry out basic operations for each discipline including: safety measures, handling, waste disposal and activity register. | | | | |------|---|---|---|---| | CE24 | Knowing basic and instrument laboratory techniques in the different areas of biotechnology. | | | | | CE25 | Knowing how to analyze and understand scientific data related to biotechnology. | | X | | | CE27 | Knowing and applying action plans and assessment criteria of biotechnology processes. | | | | | CE28 | Integrating life science and Engineering into processes of development of biotechnological products and applications. | | | X | | CE29 | Contrasting and checking results of biotechnological experimentation. | | | | | CE30 | Solving and analyzing problems posed by biotechnology. | | | X | | CE31 | Describing and calculating important variables of processes and experiments. | | X | | | CE32 | Knowing how to use different specific operating systems and software packages designed for Biotechnology. | | | | | CE33 | Knowing and complying with legislation and ethics of biotechnological processes and applications. | | X | | | CE34 | Knowing main characteristics of Molecular biosciences and biotechnology communication. | X | | | | TRANS | VERSAL | Weighting | |-------|---|-----------| | | | 1 2 3 4 | | CT02 | Capacity to organize and plan. | x | | CT03 | Mastering Spanish oral and written communication. | x | | CT05 | Knowing and applying Basic ITC skills related to Biotechnology. | x | | СТ06 | Capacity to manage information (capacity to look for and analyze information coming from different types of sources). | x | | CT07 | Problem solving. | x | Year 2023/2024 1100405 - Biotechnological Processes and Products | CT09 | Capacity to work in interdisciplinary and multidisciplinary team. | X | | |------|---|---|---| | CT10 | Interpersonal skills. | x | | | CT12 | Critical and self-critical capacity. | | x | | CT13 | Ethics. | | x | | CT14 | Capacity to learn | | x | | CT16 | Capacity to produce new ideas (creativity) | | x | | CT17 | Leadership abilities | X | | | CT18 | Taking initiatives and enterprising spirit | | x | | CT19 | Capacity to apply theoretical knowledge | | X | | CT20 | Research skills | x | | | CT21 | Sensitivity to environmental issues | 4 | X | Year 2023/2024 1100405 - Biotechnological Processes and Products ## Assessment system for the acquisition of competencies and grading system | Assessed learning outcomes | Granted percentage | Assessment method | |----------------------------|--------------------|----------------------| | R1, R2, R3, R5 | 70,00% | Written test | | R1, R2, R3, R4, R5, R6 | 30,00% | Submission of papers | #### Observations **Written test.** To pass the subject, it is necessary to obtain a minimum score of 5/10. **Work delivery.** To pass the subject it will be necessary to obtain a 5/10 in the qualification of the assigned periodic works. If a student, for some justified reason, could not be evaluated by one of these systems, he may consult with the teacher and agree on some other alternative for the evaluation and qualification of the knowledge acquired #### **MENTION OF DISTINCTION:** According to Article 22 of the Regulations governing the Evaluation and Qualification of UCV Courses, the mention of "Distinction of Honor" may be awarded by the professor responsible for the course to students who have obtained, at least, the qualification of 9 over 10 ("Sobresaliente"). The number of "Distinction of Honor" mentions that may be awarded may not exceed five percent of the number of students included in the same official record, unless this number is lower than 20, in which case only one "Distinction of Honor" may be awarded. ### Learning activities The following methodologies will be used so that the students can achieve the learning outcomes of the subject: - M1 Teacher presentation of contents, analysis of competences, explanation and in-class display of skills, abilities and knowledge. - M2 Group work sessions supervised by the professor. Case studies, diagnostic tests, problems, field work, computer room, visits, data search, libraries, on-line, Internet, etc. Meaningful construction of knowledge through interaction and student activity. Year 2023/2024 1100405 - Biotechnological Processes and Products М3 Activities carried out in spaces with specialized equipment. M4 Supervised monographic sessions with shared participation.. M5 Application of multidisciplinary knowledge. M6 Personalized and small group attention. Period of instruction and/or guidance carried out by a tutor to review and discuss materials and topics presented in classes, seminars, readings, papers, etc. M7 Set of oral and/or written tests used in initial, formative or additive assessment of the student **M8** Group preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring sessions. Work done on the university e-learning. M9 Student's study: Individual preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring sessions. Work done on the university e-learning platform. Year 2023/2024 1100405 - Biotechnological Processes and Products #### **IN-CLASS LEARNING ACTIVITIES** | | LEARNING OUTCOMES | HOURS | ECTS | |--------------------------------------|------------------------|-------|------| | ON-CAMPUS CLASS | R1, R2, R3, R5, R6 | 40,00 | 1,60 | | PRACTICAL CLASSES M2 | R1, R2, R3, R4, R5, R6 | 6,00 | 0,24 | | SEMINAR
M4 | R1, R2, R5, R6 | 5,00 | 0,20 | | GROUP PRESENTATION OF ASSIGNMENTS M5 | R1, R2, R3, R4, R5, R6 | 4,00 | 0,16 | | TUTORIAL
M6 | R1, R2, R3, R4, R5, R6 | 3,00 | 0,12 | | ASSESSMENT
M7 | R1, R2, R3, R4, R5, R6 | 2,00 | 0,08 | | TOTAL | | 60,00 | 2,40 | #### **LEARNING ACTIVITIES OF AUTONOMOUS WORK** | | LEARNING OUTCOMES | HOURS | ECTS | |-------------------------------|------------------------|-------|------| | AUTONOMOUS GROUP WORK | R1, R2, R3, R4, R5, R6 | 18,00 | 0,72 | | AUTONOMOUS INDIVIDUAL WORK M9 | R1, R2, R3, R4, R5, R6 | 72,00 | 2,88 | | TOTAL | | 90,00 | 3,60 | Year 2023/2024 1100405 - Biotechnological Processes and Products ## **Description of the contents** Description of the necessary contents to acquire the learning outcomes. #### Theoretical contents: Content block Contents DIDACTIC UNIT 1. INDUSTRIAL OBTAINING PROCESSES OF BIOTECHNOLOGICAL PRODUCTS Unit 1. Microorganisms of industrial use. Bacteria, yeasts and filamentous fungi Unit 2. Microbial growth. Culture media. Optimization of growth conditions. Types of production processes Unit 3. Industrial fermenters. Types, design and control systems. Scaling. Obtaining products on an industrial scale Unit 4. Production processes through immobilized biocatalysts Unit 5. Extraction of the final product. Isolation and purification methods Problem solving in class DIDACTIC UNIT 2-BIOTECHNOLOGICAL SECTORS Unit 1. Biomass production. Organic products, biopolymers, enzymes and other macromolecules. Unit 2. Therapeutic products and antibiotics Unit 3. Food biotechnology. Obtaining food and drinks. Unit 4. Biotechnology and agricultural industry. Production improvements. Biopesticides. Biofertilizers. Auxiliary fauna. Unit 5. Biotechnology and environment. Soil characteristics. Causes of soil and water pollution. Sources and types of contaminants. Unit 6. Bioremediation. Microorganisms for the recovery of contaminated soils. Unit 7. Phytoremediation. Plants for the recovery of contaminated soils. Unit 8. Design of green filters (wetlands) for the recovery of contaminated waters. Unit 9. Wastewater treatment plants Unit 10. Biofuels. Lignocellulosic biomass, liquid biofuels and biogas. Unit 11. Biosensors. Types and operation. Applications Unit 12. Introduction to biomaterials. Year 2023/2024 1100405 - Biotechnological Processes and Products ## Organization of the practical activities: | | Content | Place | Hours | |------|--------------------|--------------|-------| | PR1. | Problem resolution | Lecture room | 6,00 | ### Temporary organization of learning: | Block of content | Number of sessions | Hours | | |--|--------------------|-------|--| | DIDACTIC UNIT 1. INDUSTRIAL OBTAINING PROCESSES OF BIOTECHNOLOGICAL PRODUCTS | 9,00 | 18,00 | | | DIDACTIC UNIT 2- BIOTECHNOLOGICAL SECTORS | 21,00 | 42,00 | | Year 2023/2024 1100405 - Biotechnological Processes and Products #### References #### **BASIC BIBLIOGRAPHY** Brown, C.M., Campbell, I, & Priest, F.G. (1989). Introducción a la Biotecnología. Ed. Acribia, Zaragoza. Crueger, W. & Crueger, A. (1993). Biotecnología: Manual de Microbiología Industrial. Ed. Acribia, Zaragoza. Demain, A.L. & Davies, J.E. (1999). Manual of Industrial Microbiology and Biotechnology. Ed. American Society for Microbiology, Washington D. C. Gódia, F. & López, J. (editores); Casas, C.; Lema, J.M.; Roca, E., (1998). Ingeniería Bioquímica. Ed. Síntesis. Madrid. Leveau, J.Y. & Bouix, M. (2000). Microbiología industrial: los microorganismos de interés industrial. Ed. Acribia, Zaragoza. Ratledge, C. & Kristiansen, B. (2009). Biotecnología Básica. Ed. Acribia, Zaragoza. Scragg, A. (2010). Biotecnología para ingenieros. Sistemas biológicos en procesos tecnológicos. Ed. Limusa, México. Smith, J.E. (2004). Biotecnología. Acribia, Zaragoza. Stanbury, P.F., Whitaker, A. & Hall, S.J. (1995). Principles of fermentation technology. Butterworth-Heinemann, Oxford. Trevan, M.D., Boffey, S. Goulding, K.H. & Stanbury, P. (1990). Biotecnología: Principios biológicos. Ed. Acribia, Zaragoza. Waites, M.J., Morgan, N.L., Rockey, J. & Higton, G. (2001). Industrial Microbiology: An Introduction. 1st ed, Blackwell Science. Ward, O.P. (1991). Biotecnología de la fermentación. Ed. Acribia, Zaragoza COMPEMENTARY BIBLIOGRAPHY Benítez, A. (2005). Avances recientes en Biotecnología Vegetal e Ingeniería Genética de Plantas. Ed. Reverté, Barcelona. Boulton, C. & Quain, D. (2001). Brewing Yeast and Fermentation. Blackwell Science. Camps, M & Marcos, F.(2008) Los biocombustibles. Mundi-prensa. Castillo, F. & Roldán, M.D. (2005). Biotecnología ambiental. Tébar, Madrid Cavaco-Paulo, A. & Gübitz, G. M. Textile processing with enzymes. The textile Institute. CRC press. 2003 Dabrowiak, J. C. (2009). Metals in medicine. Wiley Gacesa, P.&y Hubble, P. (1990). Tecnología de las enzimas. Ed. Acribia, Zaragoza. García, M., Quintero, R. & López-Munguía, A. (2000). Biotecnología Alimentaria. Editorial Limusa S.A. México. Glazer, A.N. & Nikaido, H. (1998). Microbial Biotechnology. Fundamentals of applied Microbiology. Ed. Freeman, Nueva York. Hough, J.S. (1990). Biotecnología de la cerveza y de la malta. Ed. Acribia, Zaragoza. Jones, D.G. (1993). Exploitation of microorganisms. Ed. Chapman and Hall, Londres. Klefenz, H. (2002). Industrial Pharmaceutical Biotechnology. Wiley-VCH. Year 2023/2024 1100405 - Biotechnological Processes and Products Klein, J. & Winter, J. (2000). Biotechnology. 2nd Edition, Volume 11 - Environmental Processes (3 Volume Set). Wiley. Lee, B.H. (1996). Fundamentos de Biotecnología de los alimentos. Ed. Acribia, Zaragoza. Mara D. & Horan, N. 2003. Handbook of Water and Wastewater Microbiology. Ed. Academic Press, Amsterdam. Neeser, J.R. & German, B.J. (2004). Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals. Marcel Dekker. Nierstrasz, V. A. & A. Cavaco-Paulo, A. (2010). Advances in textile biotechnology. The textile Institute. Woodhead publishing Limited. Ratner, B.D., Hoffman, A. S., Shoen, F. J. & Lemons, J. E. (2013). Biomaterials Science. An introduction to materials in medicine. Elsevier. Vega, J.M., Castillo, F. & Cárdenas, J. (1983). La Bioconversión de la Energía. Pirámide, Madrid. Walker, J.M. & E.B. Gingold (1997). Biologia Molecular y Biotecnologia. 2ª Ed. Ed. Acribia. Zaragoza Year 2023/2024 1100405 - Biotechnological Processes and Products #### Addendum to the Course Guide of the Subject Due to the exceptional situation caused by the health crisis of the COVID-19 and taking into account the security measures related to the development of the educational activity in the Higher Education Institution teaching area, the following changes have been made in the guide of the subject to ensure that Students achieve their learning outcomes of the Subject. <u>Situation 1: Teaching without limited capacity</u> (when the number of enrolled students is lower than the allowed capacity in classroom, according to the security measures taken). In this case, no changes are made in the guide of the subject. <u>Situation 2: Teaching with limited capacity</u> (when the number of enrolled students is higher than the allowed capacity in classroom, according to the security measures taken). In this case, the following changes are made: #### 1. Educational Activities of Onsite Work: All the foreseen activities to be developed in the classroom as indicated in this field of the guide of the subject will be made through a simultaneous teaching method combining onsite teaching in the classroom and synchronous online teaching. Students will be able to attend classes onsite or to attend them online through the telematic tools provided by the university (videoconferences). In any case, students who attend classes onsite and who attend them by videoconference will rotate periodically. In the particular case of this subject, these videoconferences will be made through: | X | Microsoft Teams | | | |---|-----------------|--|--| | | Kaltura | | | Year 2023/2024 1100405 - Biotechnological Processes and Products #### Situation 3: Confinement due to a new State of Alarm. In this case, the following changes are made: #### 1. Educational Activities of Onsite Work: All the foreseen activities to be developed in the classroom as indicated in this field of the guide of the subject, as well as the group and personalized tutoring, will be done with the telematic tools provided by the University, through: | X Microsoft Teams | | |---|--| | Kaltura | | | | | | Explanation about the practical sessions: | Year 2023/2024 1100405 - Biotechnological Processes and Products ## 2. System for Assessing the Acquisition of the competences and Assessment System | ONSITE WORK | | | | | | | |---------------------------------|---|-------------------------------|------------------------------|----------------|--|--| | Regarding the Assessment Tools: | | | | | | | | | | | | | | | | | χ The Assessment Tools will not be modified. If onsite assessment is not possible, it | | | | | | | | will be done online through the UCVnet Campus. | | | | | | | _ | | | | | | | | | The following changes online teaching. | will be made to a | dapt the subject's assessmer | nt to the | | | | | • | | | | | | | Course guide | | Adaptation | | | | | | _ | | A.II. () | D : 0 10 | DI 16 | | | | | Assessment tool | Allocated | Description of the | Platform to be | | | | _ | Assessment tool | percentage | suggested changes | used | | | | - | Assessment tool | | · | | | | | - | | percentage | suggested changes | used | | | | | ne other Assessment Tools v | percentage | suggested changes | used | | | | | | percentage | suggested changes | used | | | | | ne other Assessment Tools v | percentage | suggested changes | used | | | | C | ne other Assessment Tools v | percentage
vill not be mod | suggested changes | used | | | | C | ne other Assessment Tools v
ourse Guide. | percentage
vill not be mod | suggested changes | used | | | | C | ne other Assessment Tools v
ourse Guide. | percentage
vill not be mod | suggested changes | used | | | | C | ne other Assessment Tools v
ourse Guide. | percentage
vill not be mod | suggested changes | used | | |