

Year 2025/2026 1100305 - Biochemical Engineering

Information about the subject

Degree: Bachelor of Science Degree in Biotechnology

Faculty: Faculty of Veterinary Medicine and Experimental Sciences

Code: 1100305 Name: Biochemical Engineering

Credits: 6,00 ECTS Year: 3 Semester: 1

Module: Bioengineering and Biotechnological Processes

Subject Matter: Biochemical Engineering Type: Compulsory

Angel Serrano Aroca (Responsible Lecturer)

Department: Biotechnology

Type of learning: Classroom-based learning

Languages in which it is taught: Spanish

Lecturer/-s:

1103

1105D <u>Angel Serrano Aroca</u> (**Responsible Lecturer**) angel.serrano@ucv.es

angel.serrano@ucv.es

Year 2025/2026 1100305 - Biochemical Engineering

Module organization

Bioengineering and Biotechnological Processes

Subject Matter	ECTS	Subject	ECTS	Year/semester
Genetic Engineering	6,00	Genetic and Molecular Engineering	6,00	3/2
Bioreactors	6,00	Bioreactors	6,00	3/2
Biochemical Engineering	6,00	Biochemical Engineering	6,00	3/1
Plant and Animal Biotechnology	6,00	Plant and Animal Biotechnology	6,00	3/2
Cell Culture	6,00	Cell Culture	6,00	3/2
Biotechnological Processes and Products	6,00	Biotechnological Processes and Products	6,00	4/1

Recommended knowledge

Recommended previous courses: Chemistry, Mathematics, Thermodynamics and Kinetics.

Year 2025/2026 1100305 - Biochemical Engineering

Learning outcomes

At the end of the course, the student must be able to prove that he/she has acquired the following learning outcomes:

R1 The student has understood and assimilated the contents of the subject. R2 The student is able to solve problems or case studies related to the subject contents, by using different resources (bibliographic, IT, etc.) R3 The student is able to write an intelligible and organized text on different aspects of the subject. R4 The student is able to present and defend his/her work adequately. R5 The student seeks bibliographic information from different sources and can analyze it with a critical and constructive spirit. R6 The student collaborates with the teacher and his/her peers throughout the learning process; he/she works in a team; treats everyone with respects, is proactive and fulfills the organization rules of the course.

Year 2025/2026 1100305 - Biochemical Engineering

Competencies

Depending on the learning outcomes, the competencies to which the subject contributes are (please score from 1 to 4, being 4 the highest score):

BASIC		,	Weig	hting	l
		1	2	3	4
CB1	Students acquire and understand knowledge in their field of study based on general secondary education but usually reaching a level that, although supported on advanced text books, also includes aspects involving state-of-the-art knowledge specific to their area.			X	
CB2	Students are able to apply knowledge to their work in a professional way and have the competences enabling them to state and defend views and opinions as well as perform problem-solving tasks in their field of study.				X
CB3	Students are able to collect and interpret relevant data (generally in their field of study) and give opinions that involve reflection on relevant social, scientific or ethical issues.			X	
CB4	Students can communicate information, ideas, problems and solutions to a specialized or non-specialized audience.		1	X	
CB5	Students develop the necessary learning skills to undertake further studies with a high level of autonomy.		X		-1

GENERAL	Weighting
	1 2 3 4
CG01 Capacity to analyze and synthesize.	x

SPECIFIC		Weighting				
		1	2			4
CE22	Knowing and understanding contents, principles and theories related to biotechnology.			,	X	
	related to biotechnology.			-	7	:

Year 2025/2026 1100305 - Biochemical Engineering

CE23	Knowing how to use laboratory equipment and to carry out basic operations for each discipline including: safety measures, handling, waste disposal and activity register.			
CE24	Knowing basic and instrument laboratory techniques in the different areas of biotechnology.			
CE25	Knowing how to analyze and understand scientific data related to biotechnology.		X	
CE27	Knowing and applying action plans and assessment criteria of biotechnology processes.			1
CE28	Integrating life science and Engineering into processes of development of biotechnological products and applications.			
CE29	Contrasting and checking results of biotechnological experimentation.		1 1 1 1 1	1
CE30	Solving and analyzing problems posed by biotechnology.		X	1
CE31	Describing and calculating important variables of processes and experiments.		X	
CE32	Knowing how to use different specific operating systems and software packages designed for Biotechnology.	X		
CE33	Knowing and complying with legislation and ethics of biotechnological processes and applications.		X	
CE34	Knowing main characteristics of Molecular biosciences and biotechnology communication.		X	

TRANS	VERSAL	Weighting
		1 2 3 4
CT02	Capacity to organize and plan.	x
CT03	Mastering Spanish oral and written communication.	x
CT05	Knowing and applying Basic ITC skills related to Biotechnology.	x
CT06	Capacity to manage information (capacity to look for and analyze information coming from different types of sources).	x
CT07	Problem solving.	x

Year 2025/2026 1100305 - Biochemical Engineering

CT09	Capacity to work in interdisciplinary and multidisciplinary team.		X	
CT10	Interpersonal skills.		X	
CT12	Critical and self-critical capacity.			x
CT13	Ethics.		X	
CT14	Capacity to learn			X
CT16	Capacity to produce new ideas (creativity)		X	
CT17	Leadership abilities	X		
CT18	Taking initiatives and enterprising spirit	X		
CT19	Capacity to apply theoretical knowledge	X		
CT20	Research skills	X		
CT21	Sensitivity to environmental issues	x	4	

Year 2025/2026 1100305 - Biochemical Engineering

Assessment system for the acquisition of competencies and grading system

Assessed learning outcomes	Granted percentage	Assessment method
R1, R5, R6	70,00%	Written test
R2, R3, R4	30,00%	Submission of papers

Observations

This course is not eligible for single evaluation. According to the general evaluation and qualification regulations, the preferred evaluation system will be continuous evaluation. Within the submission of papers and additional activities, the problems solved in class by the students will follow a continuous assessment system.

- In order to calculate the average grade with the other assessment tools, a minimum of 5 (from 0 to 10) is required in the written test. In case of obtaining a grade higher than 4,75 and lower than 5, if the professor finds it suitable, during the test review, he may request additional activities or works to complete the deficiencies shown by the student.
- The group work assessment tool will consist of a group work, a presentation and additional activities carried out during the course. The group work will be 25%, the presentation 25% and the additional activities 50% of the final grade for this assessment tool. In order to calculate the average grade with the other assessment tools, a minimum of 5 (from 0 to 10) is required in this part.
- * Students who for duly justified reasons cannot be assessed by this evaluation system, must contact the professor who will study these particular cases.
- * The professor may propose some voluntary work to raise the final grade up to a point.
- **The use of artificial intelligence (AI)-based tools is subject to the discretion of the teacher, who may establish specific limits or conditions depending on the training or assessment activity.

Year 2025/2026 1100305 - Biochemical Engineering

MENTION OF DISTINCTION:

In accordance with the regulations governing the assessment and grading of subjects in force at UCV, the distinction of "Matrícula de Honor" (Honours with Distinction) may be awarded to students who have achieved a grade of 9.0 or higher. The number of "Matrículas de Honor" (Honours with Distinction) may not exceed five percent of the students enrolled in the group for the corresponding academic year, unless the number of enrolled students is fewer than 20, in which case a single "Matrícula de Honor" (Honours with 9 Distinction) may be awarded. Exceptionally, these distinctions may be assigned globally across different groups of the same subject. Nevertheless, the total number of distinctions awarded will be the same as if they were assigned by group, but they may be distributed among all students based on a common criterion, regardless of the group to which they belong. The criteria for awarding "Matrícula de Honor" (Honours with Distinction) will be determined according to the guidelines stipulated by the professor responsible for the course, as detailed in the "Observations" section of the evaluation system in the course guide.

Learning activities

The following methodologies will be used so that the students can achieve the learning outcomes of the subject:

M1 Teacher presentation of contents, analysis of competences, explanation and in-class display of skills, abilities and knowledge. M2 Group work sessions supervised by the professor. Case studies, diagnostic tests, problems, field work, computer room, visits, data search, libraries, on-line, Internet, etc. Meaningful construction of knowledge through interaction and student activity. M3 Activities carried out in spaces with specialized equipment. M4 Supervised monographic sessions with shared participation... M5 Application of multidisciplinary knowledge. M6 Personalized and small group attention. Period of instruction and/or guidance carried out by a tutor to review and discuss materials and topics presented in classes, seminars, readings, papers, etc. M7 Set of oral and/or written tests used in initial, formative or additive assessment of the student **M8** Group preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring

sessions. Work done on the university e-learning.

Year 2025/2026 1100305 - Biochemical Engineering

M9

Student's study: Individual preparation of readings, essays, problem-solving, seminars, papers, reports, etc. to be presented or submitted in theoretical, practical and/or small-group tutoring sessions. Work done on the university e-learning platform.

IN-CLASS LEARNING ACTIVITIES

	LEARNING OUTCOMES	HOURS	ECTS
ON-CAMPUS CLASS M1	R1, R2, R3, R4, R6	28,00	1,12
PRACTICAL CLASSES M2	R1, R2, R3, R4, R5, R6	20,00	0,80
SEMINAR M4	R1, R3	5,00	0,20
GROUP PRESENTATION OF ASSIGNMENTS M5	R1, R3, R4	2,00	0,08
TUTORIAL M6	R3, R4, R5, R6	3,00	0,12
ASSESSMENT M7	R1, R2, R3, R4, R5, R6	2,00	0,08
TOTAL		60,00	2,40

LEARNING ACTIVITIES OF AUTONOMOUS WORK

	LEARNING OUTCOMES	HOURS	ECTS
AUTONOMOUS GROUP WORK M8	R1, R2, R3, R4, R5, R6	18,00	0,72
AUTONOMOUS INDIVIDUAL WORK	R1, R2, R3, R4, R5, R6	72,00	2,88
TOTAL		90,00	3,60

Year 2025/2026 1100305 - Biochemical Engineering

Description of the contents

Description of the necessary contents to acquire the learning outcomes.

Theoretical contents:

Content block	Contents
DIDACTIC UNIT 1 – BALANCES	Chapter 1. What is a biochemical engineer? Chapter 2. Mass balance Chapter 3. Energy balance Chapter 4. Unsteady-State mass and energy balance Problems
DIDACTIC UNIT 2 – PHYSICAL PROCESSES AND UNIT OPERATIONS	Chapter 5. Introduction to transport phenomena Chapter 6. Basis of heat transfer Chapter 7. Basis of mass transfer Chapter 8. Unit operations

Organization of the practical activities:

	Content	Place	Hours
PR1.	Problems	Lecture room	20,00

Temporary organization of learning:

Block of content	Number of sessions	Hours
DIDACTIC UNIT 1 – BALANCES	24,00	48,00
DIDACTIC UNIT 2 – PHYSICAL PROCESSES AND UNIT OPERATIONS	6,00	12,00

Year 2025/2026 1100305 - Biochemical Engineering

References

·Doran PM (2013) **Bioprocess Engineering Principles.** Second Ediction. Ed. Academic Press.

·Shijie Liu (2013) Bioprocess Engineering. Kinetics, Biosystems, Sustainability, and Reactor Design. Elsevier.

·Belter PA, Cussler EL, Hu W (1998) **Bioseparations. Downstream Processing for Biotechnology**. Ed. John Wiley and Sons Inc.

·Gòdia Casablancas F y López Santín J (2005) Ingeniería Bioquímica. Ed. Síntesis.